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Preamble

SasView was originally developed by the University of Tennessee as part of the Distributed
Data  Analysis  of  Neutron  Scattering  Experiments  (DANSE)  project  funded  by  the  US
National Science Foundation (NSF), but is currently being developed as an Open Source
project  hosted  on  GitHub  and  managed  by  a  consortium  of  scattering  facilities.
Participating facilities include  (in alphabetical  order):  the Australian National  Science &
Technology  Centre  for  Neutron  Scattering, the  Diamond  Light  Source,  the  European
Spallation Source,  the  Federal Institute for Materials Research and Testing,  the Institut
Laue  Langevin,  the  ISIS  Pulsed  Neutron  &  Muon  Source,  the  National  Institute  of
Standards & Technology Center for Neutron Research, the Oak Ridge National Laboratory
Neutron Sciences Directorate, and the Technical University Delft Reactor Institute.

SasView is distributed under a 'Three-clause' BSD licence which you may read here:
https://github.com/SasView/sasview/blob/master/LICENSE.TXT 

SasView is free to download and use, including for commercial purposes.

© 2009-2020 UMD, UTK, NIST, ORNL, ISIS, ESS, ANSTO, ILL, TUD, DLS, BAM

If you make use of SasView

If you use SasView to do productive scientific research that leads to a publication, we ask
that you acknowledge use of the program with the following text:

This  work  benefited  from  the  use  of  the  SasView  application,  originally
developed under NSF Award DMR-0520547. SasView also contains code
developed with funding from the EU Horizon 2020 programme under the
SINE2020 project Grant No 654000.
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Learning Objective

This tutorial will demonstrate how to perform correlation function analysis on 1D (‘intensity’
versus Q) datasets in SasView. But please note that this analysis is not available before
Version 4.1.0.

It  is  assumed that  the reader has some familiarity  with  the purpose  and  principles  of
correlation function analysis. If not, these references provide an overview:

• Ruland, W. Coll. Polym. Sci. (1977), 255, 417-427
• Strobl, G.R.; Schneider, M. J. Polym. Sci. (1980), 18, 1343-1359
• Koberstein, J.; Stein R. J. Polym. Sci. Phys. Ed. (1983), 21, 2181-2200
• Baltá  Calleja,  F.J.;  Vonk,  C.G.  X-ray Scattering of  Synthetic  Poylmers,  Elsevier.

Amsterdam (1989), 247-270
• Göschel, U.; Urban, G. Polymer (1995), 36, 3633-3639
• Stribeck,  N.  X-ray  Scattering  of  Soft  Matter,  Springer-Verlag.  Berlin  Heidelberg

(2007), Section 8.5
• http://www.sasview.org/docs/user/sasgui/perspectives/corfunc/fdr-pdfs.html#fdr  

Also note that the integrals applied by the correlation function analysis in SasView (see
page 14) assume that  the data being transformed was either collected on a pinhole-
collimated instrument or, if it was instead collected on a slit-collimated instrument, that it
has been suitably Lorentz-corrected. Transforming slit-smeared data directly will generate
invalid output.

The  program interface  shown in  this  tutorial  is  SasView Version  5.0.2 running  on  a
Windows platform but, apart from a few small differences in look and functionality, this
tutorial is generally applicable to SasView 5.x running on any platform. However, there is
a separate tutorial for using the old program interface released with SasView 4.1.

Glossary

a priori information Known  facts  about  the  system  whose  datasets  are  being
analysed.

Correlation function A real-space  function  that  describes  spatial  relations  in  the
system whose datasets are being analysed.  The greater the
degree of structural order in the system, the more periodicity
the correlation function will display. In essence, the correlation
function is a density probability function.

Correlation length A measure of the periodicity of a correlation function.

Extrapolation A  mathematical  process  for  inferring  unknown  values,  or
extending  a  function  beyond  known  limits,  using  trends  in
known data or established dependencies.

Fourier Transform A mathematical ‘tool’ that decomposes a measured signal into
a sum of sine or cosine functions. 
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Invariant Also called the Porod Invariant, the Scattering Invariant, and
the Total Scattering:

Invariant=∫
0

∞

I (Q)Q2dQ

Inverse-space See reciprocal-space

Long Period In a lamellar system, the distance from one face of a lamellae
to the same face of the adjacent lamellae.

Real-space Real  world  coordinates.  The  opposite  of  inverse-space  or
reciprocal space.

Reciprocal-space The Fourier Transform of real world coordinates. The opposite
of real-space. In scattering measurements, Q is the reciprocal-
space equivalent of a real world length scale.

SLD Abbreviation for Scattering Length Density, a measure of the 
ability of a molecule to scatter. Strictly speaking, SLD is a 
SANS quantity, so if fitting SAXS data use electron density 
values in their place.

SLD values (neutron and X-ray) can be calculated with the 
SLD Calculator Tool in SasView.

Total Scattering See Invariant

Transformation A mathematical process for converting between real-space and
inverse-space.

Uncertainties Every experimental measurement, including the measurement 
of I(Q), is subject to some degree of error (which will, ideally, 
be included in the dataset). Similarly, the parameters returned 
by any analysis will have some associated range of 
uncertainty.

Parameters with uncertainties that are more than 95% of the 
parameter value should be viewed with deep suspicion.
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Running SasView

Windows
Either select SasView from ‘Start’>  ‘All  Programs’  or,  if  you  asked  the
installer to create one, double-click on the SasView desktop icon.

Mac OS
Go in to your ‘Applications’ folder and select SasView.

Example 1

This computes the correlation function from a quasi-lamellar system and then interprets
that  correlation  function  to  extract  parameters  characterising  the  underlying
nanostructure. This is a typical use case.

In the Data Explorer panel, click the Load Data button, and navigate to the \test\1d_data
folder in the SasView installation directory.

Select the ISIS_98929.txt dataset and click the Open button.
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This dataset is the SANS from fibres of nylon-6 (polyamide-6) hydrated with heavy water.
The fibres are aligned perpendicular to  the neutron beam and parallel  to the detector
meridian.

Nylon  is  a  semi-crystalline  polymer,  meaning  it  is  composed of  alternating  regions  of
crystalline  (more  dense)  and  amorphous (less  dense)  polymer.  When hydrated,  water
molecules preferentially locate to the amorphous regions. If heavy water is used the SLD
of the amorphous regions is enhanced relative to the SLD of the crystalline regions.

The hierarchical structure of nylon fibres. Figure reprinted from “Use of scattering methods in chemical 
industry - SAXS and SANS from fibers and films”. Chapter 21, in “Neutrons, X-rays and Light: 

Scattering Methods Applied to Soft Condensed Matter”. Lindner & Zemb (editors), North-Holland. 2002.

This periodicity in the nanostructure manifests itself as a peak in the scattering data.
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At the bottom of the Data Explorer panel, click the drop-down that currently says ‘Fitting’
and select Corfunc. Then click the Send To button.

The Fit  Panel transforms into  a  Corfunc Perspective page  and  the measured  data  is
displayed along with three vertical bars.
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Tip: If you want to change the axis scales to alter the appearance of the plot, right-click
on the graph and select Change Scale.

The  correlation  function  is  computed by  taking  the  (cosine)  Fourier  Transform of  the
scattering data. However, this requires performing an integration between Q=0 and Q=∞,
and quite clearly the measured data do not extend to those limits (and nor could they)! The
prerequisite, therefore, is to extrapolate the measured data towards those limits.

The three bars represent the limits of the measured data that will be used to construct the
extrapolation functions. In the case of the low-Q extrapolation, all data to the left of the
leftmost blue vertical bar is used. In the case of the high-Q extrapolation, data between the
two rightmost blue vertical bars is used.

Tip: You can change the default  extrapolation ranges either by left-clicking on a vertical
bar and dragging it left or right, or by typing appropriate Q-values in the “Q Range” boxes
in the Corfunc Perspective page.

Aside: At the present time, SasView extrapolates the measured data with the
following functions:

Low-Q High-Q

Guinier function Porod function

I (Q)=A .e(B.Q
2)

I (Q)=K .Q�4
. e

(�σ 2

.Q
2)+Bg

where B is proportional to a radius-of-gyration, σ is a measure of how abruptly
the SLD changes between the quasi-lamellar regions (σ ≥ 0; 0 represents a
step function), and  Bg is a Q-independent background level.  A and K are just
scale factors.

Though the  Guinier  function may be a dubious description of  the low-angle
scattering  from some systems, because of the transformation from reciprocal-
space to real-space  any artefacts that the use of this function introduces only
manifest themselves in the region of the correlation function where the density
probability is close to zero anyhow.

Conversely,  the  quality  of  the  high-Q  extrapolation  is  much  more
important, so consider carefully which datapoints to include between the purple
bars.  Do not include any datapoints  within  the peak itself. In  lieu of  infinity,
SasView computes  the  high-Q extrapolation  out  to  100 times the largest  Q
value in the measured dataset. 

In this example, change the low-Q extrapolation limit to 0.01.

In  SasView  4.x  the  program  automatically  estimates  the  background  level  (Bg)  and
subtracts  this  from the  displayed  data.  SasView 5.x  does not  do  this! So click  the
Calculate button in the Background box to generate an estimate of Bg. Close inspection of
the  data then  reveals  that the  last  three  datapoints  will  go  negative  as  a  result  of
subtracting Bg (see below), so set the upper limit for the high-Q extrapolation to Q=0.28.
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Tip: If the limit bar does not update when a limit is changed, move the mouse pointer
over the graph window.

The positioning of the lower limit for the high-Q extrapolation is more arbitrary but,  as
explained above, also more important. We need to encompass sufficient datapoints to give
a good extrapolation but not so many that the extrapolation is impacted by the tail of the
peak in the data. Try a  lower limit of Q=0.128.  Now recalculate the background level by
clicking the  Calculate Bg button on the Correlation Function analysis page. The value
displayed will change slightly.

Next, click the Extrapolate button at the bottom of the page.
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Several things happen:

• SasView computes the low-Q and high-Q extrapolation functions; the values of  A,
B,  K,  σ,  and  Bg are returned in the middle of  the Correlation Function analysis
page.

• The  Bg value is  shown. The background level  is  subtracted from the measured
dataset but some datapoints still have negative intensities.

• The  graph  window  updates  to  show  an orange line;  this  is  a  smoothed
concatenation of the low-Q extrapolation (from 0 ≤ Q < Qmin), the measured dataset
(from Qmin ≤ Q  ≤ Qmax), and the high-Q extrapolation (from  Qmax < Q  ≤  100xQmax).
Note that the full Q-range of the extrapolated data is not displayed for clarity! 

Aside: The smoothing is applied to prevent the joins between the extrapolations
and the measured dataset generating ‘ripples’ in the correlation function. At the
same time  it  provides  a  means  of  giving  the  concatenated  dataset  equally
spaced Q points which facilitates the Fourier Transform.

The algorithm used is described in more detail in the SasView documentation
at: http://www.sasview.org/docs/user/sasgui/perspectives/corfunc/corfunc_help.html 

The  essential outcome from extrapolation is that I(Q)extrapolation is  ~zero at high Q
values. If this is not the case, manually adjust Bg and re-extrapolate. If the high-Q data
are noisy then this may require several iterations.

We are now ready to compute the correlation function. So click the Transform button.

Two new graphs appear:

• 1D Correlation - or Γ1(x)
• 3D Correlation - or Γ3(x); the 3D-averaged (or ‘radial’) Correlation Function
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Aside: The transforms that SasView computes are:

1D Correlation Function: Γ
1
(x )=

1

Invariant
∫
0

∞

I (Q)Q2 cos(Qx)dQ

3D Correlation Function: Γ
3
=
1

r
∫
0

r

Γ
1
(x)dz

which is equivalent to computing: Γ
3
(x )=

1

Invariant
∫
0

∞

I (Q)Q2
sin(Qx)
Qz

dQ

Interface Distribution Function: g
1
(x)=

1

Invariant
∫
0

∞

I (Q)Q 4
cos(Qx)dx

where Γ1(0) = Γ3(0) = 1, and g1(0) ≥ 0.

The integral breadth of a correlation function is the correlation length:

correlation length=2∫
0

∞

Γ(x)dx

The Interface Distribution Function, or IDF, g1(x), has also been computed but is not
presently displayed by default. The IDF is a superposition of thickness distributions from
all the contributing lamellae.

Tip: To see a graph of the IDF, click the Create New button in the Plot box in the bottom
left corner of the SasView window. A graph will appear with  all the data known to the
program! Just right-click on the graph and remove those datasets you do not wish to see.

Tip: To obtain the datapoints for  Γ1(x),  Γ3(x)  or g1(x), simply click the  Save button and
they will be written to a text file. The format of this is described in the Appendix.

SasView computes these transforms out  to  a real-space distance of,  in  this  example,
1000 Å, because the input data were in Å-1.  But  because the features of interest in the
transforms are all at much smaller distances only a reduced range is shown for clarity.

Having  obtained  the  correlation  functions  it  is  always  advisable  to  inspect  them  for
artefacts from the Fourier Transform procedure:

• Do Γ1(x) & Γ3(x) smoothly curve into the ordinate at x=0? (sometimes overly small
values of σ can cause the functions to meet the ordinate at a sharp angle)
◦ This example: Yes

• Does Γ1(0) = Γ3(0) = 1?
◦ This example: Yes

• Do Γ1(x) & Γ3(x) tend to 0 as x tends to ∞?
◦ This example: Yes

• Are  there  ‘ripples’  in  Γ1(x)  &  Γ3(x)  with  a  period  of 2π /(100Qmax) ?  (ie,
corresponding to the truncation point of the Fourier Transform)
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◦ This example:  No (Qmax for this dataset  was 0.285  Å so the period of  these
ripples would be ~0.2 Å)

• Are there ‘ripples’ in Γ1(x) & Γ3(x) with a period of 2π /Qmax ? (ie, corresponding to
the point at which the measured dataset was extrapolated to high-Q)
◦ This example: Not obviously (Qmax for this dataset was 0.285 Å so the period of

these ripples would be ~20 Å)
• Are there ‘ripples’ in Γ1(x) & Γ3(x) with a period of 2π /Qmin ? (ie, corresponding to
the point at which the measured dataset was extrapolated to low-Q)
◦ This  example:  No (Qmin for this dataset  was 0.007  Å so the period  of  these

ripples would be ~900 Å)
and lastly:

• Do the principle peaks in Γ1(x) & Γ3(x) seem to correspond to expectations?!!!
◦ This  example:  It  is  well-established  that  the  quasi-lamellar  repeat  distance

between the crystalline regions in hydrated nylon-6 is about 84±4  Å (see  for
example, King, S.M.; Bucknall, D.G. Polymer (2005), 46, 11424-11434). As can
be seen the first prominent maximum in Γ1(x) is around 74 Å, but the fact that it
is not a sharp or symmetrical peak bears testament to an underlying distribution
of imperfectly ordered spacings. So in general Γ1(x) does seem believable. The
maximum in Γ3(x) is around 103 Å.

Notice that less structure is evident in Γ3(x) because of the orientational averaging.

As we have the a priori information that this sample posesses a quasi-lamellar structure
the final part of the analysis is to ask SasView to try and extract physical parameters from
Γ1(x).  Click  the  Extract Parameters button  at  the  bottom  of  the  Correlation  Function
analysis page.

WARNING!
Extract Parameters will  return garbage output unless it is known that the scattering is
from a lamellar or quasi-lamellar nanostructure! So use with caution!

Values will appear in the Output Parameters section.
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It is then highly-recommended to conduct a ‘sensitivity check’ to see how Γ1(x), Γ3(x), g1(x)
and the extracted parameters change as the value of Bg is altered. To do this, simply
change the value of  Bg,  and then in  sequence,  click  Extrapolate,  Transform,  Save if
required, and finally Extract Parameters.

This is the effect of changing Bg from 0.3109 (the value above) to 0.3000 (3.5% less):

Visually, only a very keen eye would spot the change in Γ1(x), but there is in fact a much
more dramatic change in g1(x).

In terms of the extracted parameters:

The  Long  Period  and  Polydispersity  are virtually  unchanged,  whilst  the  Hard  Block
Thickness, Core Thickness and Local Crystallinity have all increased (by 3.7%, 21%, and
4%, respectively).
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This ‘sensitivity check’ demonstrates the importance of having good data in the high-Q
region  in  order  to  allow  a  sensible  background  subtraction  prior  to  calculating  the
correlation functions.

But in summary, we can see that the analysis suggests that most of the quasi-lamellar
nanostructure in the nylon fibres is actually amorphous polymer (~17% crystallinity, soft
block thickness of ~61 Å). And certainly the fibres are highly flexible and extensible.

Finally, for comparison, here is a SasView model-fit to the same dataset. The model used
describes a stack of repeating lamellar structures of infinite lateral dimensions where the
lamellar repeat distance is subject to Gaussian polydispersity. The model fit is also subject
to 10% instrumental resolution smearing (for pinhole collimation).

In this fit the SLD of the hard blocks has been fixed at the SLD for nylon, whilst the SLD of
the matrix has been fixed at the SLD of heavy water. The thickness of the lamellae has
also been fixed at that deduced from the correlation function analysis.

Although the fit is not very good, it nonetheless returns a repeat distance of ~88  Å with
23% polydispersity (one standard deviation), and estimates the volume fraction of the hard
blocks (~local crystallinity) as 13%. Both parameters are similar to those returned by the
correlation function analysis. The one additional piece of information the fit returns, that is
not accessible by correlation function analysis, is the number of lamellae in each stack;
Nlayers: ~19.
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Aside: Various  procedures  have  been  proposed  to  extract  structural
parameters from Γ1(x). SasView uses the positions of the first local minima (with
Γ1(x)  <  0)  and  local  maxima  (with  Γ1(x)  >  0),  along  with  the  extrapolated
intercept and gradient of the linear section between the ordinate at x=0 and the
first local minima, as shown below.

Schematic explanation of the extraction of ideal lamellar structural parameters from Γ1(x).
Figure reprinted from “SAXS Correlation Function Analysis: Notes on the Software at Daresbury”. Nye. 1994.

From which:

Polydispersity Γmin / Γmax

Average Hard Block Thickness† Lc

Long Period Lp

Average Interface Thickness Dtr

Average Core Thickness D0

Local Crystallinity Lc / Lp = Φc

and:

Average Soft Block Thickness† Lp – Lc = La

Average Chord Length ((1/Lc) + (1/La))-1

Average Crystalline Chord Length ((1/Lc) + (1/La))-1 / Φc

Non-Ideality (Lp – Lp*)2 /  Lp
2

† “hard block” = crystalline, “soft block” = amorphous
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Optional

The  dataset  \test\1d_data\ISIS_83404.txt is  SANS  from  the  same  fibres  but  after
exposure to sulphuric acid, a reagent known to degrade the amide linkage. If you wish,
use correlation function analysis to examine how this changes the nanostructure.

Example 2

This  example  is  actually  a  demonstration  of  correlation  function  analysis  from  a
nanostructure  that  does not exhibit  lamellar order.  It  is  included here to  highlight  the
potential applications of correlation function analysis in other fields.

The  data  in  question  is  from  a  parametric  survey,  using  a  variety  of  techniques  but
including SANS, of how different heat treatments affect the nanostructure of Fe-Cr binary
alloys.  The  work  is  described  in  Xu  et  al,  Acta  Mat., (2017)  available  at
https://doi.org/10.1016/j.actamat.2017.12.008.  This  material  undergoes  spinodal
decomposition  on  thermal  ageing,  resulting  in  Fe-rich  and  Cr-rich  domains  and  a
characteristic ‘spinodal peak’ in the SANS.

SANS data of alloy specimens treated at different temperatures and subsequently 
aged at 475 C for 100 hours. Figure reproduced from Fig 6 in Xu et al, Acta Mat., (2017).

Ratio maps of the intensity of the Cr L3-edge (red) and Fe L3-edge (blue) from alloy specimens treated at different 
temperatures and aged at 475 C for 100 hours. Figure reproduced from Fig 9 in Xu et al, Acta Mat., (2017).
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Thin sections of the alloy specimens were examined by STEM-EELS and the resulting
images  processed  to  generate  the  2D auto-correlation  maps  of  the  Fe/Cr  distribution
shown  above.  These  maps  were  in  turn  radially-integrated  to  yield  an  averaged
(auto)correlation function as shown below.

Azimuthally integrated and averaged profiles of the Cr/Fe L3-edge ratio maps from alloy specimens 
aged at 475 C for 100 hours. Figure reproduced from Fig 10 in Xu et al, Acta Mat., (2017).

For comparison, here are the correlation functions computed using SasView:

As can be seen, the agreement is actually quite good! But the important point here is that
the  SANS-derived  correlation  functions  are  averaged  over  a  far  larger  gauge  volume
(mm3) compared to that from the STEM-EELS measurements (nm3).

Further Information

For further information, please consult the

SasView Tutorial Series

or

http://www.sasview.org

or email

help@sasview.org
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Appendix

Clicking the  Save button in  the  Correlation Function analysis  window writes a  space-
delimited text file with the extension .crf.

The columns in this file are, in order of occurrence:

• The real-space distance (in the inverse of the units of the input data)
• The value of Γ1(x)
• The value of Γ3(x)
• The value of g1(x)
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